Effect of Fiber Orientation on the Tensile Properties of Kenaf Fiber Reinforced Polyester Composite
DOI:
https://doi.org/10.5281/zenodo.14034662Keywords:
Natural fibers, Kenaf fiber, polymeric composites, tensile properties, mercerizationAbstract
The increasing awareness on the relevant of protecting the environment and the demand for sustainable structures have motivated researchers to develop new bio-based composites that can minimize the harmful effect to the environment. Thus, this study highlights the effects of fiber orientation on the tensile properties of unsaturated polyester resin (UPR) reinforced with unidirectional (UD) continuous kenaf fiber. To this end, the kenaf fiber reinforced polyester composite was fabricated in a unidirectional orientation with fiber volume fraction of 40%. Consequently, the kenaf fiber reinforced polyester composite was subjected to tensile tests in the longitudinal (0°) fiber orientation, transverse (90°) fiber orientation and diagonal (45°) fiber orientation. Also, the plain polyester matrix tensile test was considered and used as reference point. The result of tests showed that the tensile stiffness for 0o and 90o fiber orientation is 21257.80 MPa and 2864.45 MPa, while the tensile strength are 179.30 MPa and 11.84 MPa respectively. Also, the 45° tensile stiffness and 45° tensile strength are 1736.83 MPa and 10.77 MPa respectively. The results demonstrated that the composites with 0o fiber orientation had the best mechanical performance, followed by those with 90o and 45o fiber orientations respectively. Hence, this current improvement in performance of UD KFRP composite at 0o fiber orientation may potentially replace conventional synthetic fibers, especially for structural applications.
References
Agrawal, R., Saxena, N. S., Sharma, K. B., Thomas, S., & Sreekala, M. S. (2000). Activation energy and crystallization kinetics of untreated and treated oil palm fiber reinforced phenol formaldehyde composite. Materials Science and Engineering :A, 277(1–2), 77–82.
Akil, H. M., Omar, M. F., Mazuki, A. A. M., & Safiee, S. (2011). Kenaf fiber reinforced composites: A review. Material and Design, 32(8–9), 4107–4121
https://doi.org/https://doi.org/10.1016/j.matdes.2011.04.008
Anuar, H., & Zuraida, A. (2011). Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Composites Part B: Engineering, 42(3), 462–465. https://doi.org/10.1016/J.COMPOSITESB.2010.12.013
Ashori, A., Harun, J., Raverty, W. D., & Yusoff, M. N. D. (2006). Chemical and morphological characteristics of Malaysia cultivated kenaf (Hibiscus cannabinus L.) fibre. Polymer Plastics Technology and Engineering, 45(1), 131–134.
ASTM. (2013). Standard Test method for in-plane shear response of polymer matrix composite materials by tensile test of a±45 laminate. ASTM D 3518/D 3518. 94.
ASTM. (2014b). Standard test method for tensile properties of plastics. ASTM Intetional. Designation: D. 638, 1-
ASTM. (2014c). Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039/D 3039M.
Busuguma, U. A., Yakubu, M .K., kogo, A. A., Bukhari, M. M & Shuaibu, M. A. (2021). Determination of Phytochemicals and Elemental Composition of Kenaf Non-woven Fiber Using Proximate and X-ray Fluorescence. Nigerian Research Journal of Chemical Sciences. 9 (2), 240-251. (ISSN: 2682-6054)
Cao Y., Sakamoto, S., & Goda K. (2007). Effects of heat and alkali treatments on mechanical properties of kenaf fibres,. 16th International Conference on Composite Materials.
Cordin, M., Bechtold, T. & Pham, T. (2018). Effect of fiber orientation on the mechanical properties of polypropylene-lyocell composites. Cellulose. 25: 7197-7210. http:// doi.org/10.1007/s10570-018-2079-6
Davoodi, M. M., Sapuan, S. M., Ahmad, D., Ali, A., Khalina, A., & Jonoobi, M. (2010). Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials & Design, 31(10), 4927–4932. https://doi.org/10.1016/J.MATDES.2010.05.021
Jusoh, A. H., Rejab, M. R. M., Sirgar, J. P., & Bactiar, D. (2016). Natural fibre reinforced composites: A review on potential for corrugated core of sandwich structures. MATEC Web of Conference, 1–5.
Kumar, S. B & Kumar, J. S. (2023). Characterization ofkenaf fiber reinforced compositr with and without alkali treatment. International Journal of Scientific Research in Science, Engineering and Technology. 10(5), 118-126. http;//doi. org/ 10.32628
Lee, B. H., Kim, H. J., & Yui, W. R. (2009a). Fabrication of long and discontinuous natural fiber reinforced polypropylene bio-composites and their properties. Fibers and Polymers, 10(1), 83–90.
Lee, B. H., Kim, H. J., & Yui, W. R. (2009b). Fabrication of long and discontinuous natural fibre reinforced polypropylene bio-composites and their properties. Fibers and Polymers, 10(83–90).
Mahjoub, R., Yatim, J. M., Mohd Sam, A. R., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications.
Construction and Building Materials, 55, 103–113. https://doi.org/10.1016/J.CONBUILDMAT.2014.01.036
Malik, M., Choudhary, V., & Varma, I. K. (2000). Current status of unsaturated polyester resins. Journal of Macromolecular Science, Part C: Polymer Reviews, 40(2–3), 139–165.
Masannan, V., Anbalagan, C., Lakshmaiya, L. & Kumar., P. (2024). Experimental investigation on the drilling characteristics of kenaf/PLA-based laminates. Engineering proceeding MDPI. 16(9), 2-8. http://doi.org/10.3390
Mazuki, A. A. M., Akil, H. M., Safiee, S., Ishak, Z. A. M., & Bakar, A. A. (2011). Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 42(1), 71–76. https://doi.org/10.1016/J.COMPOSITESB.2010.08.004
Meon, M. S., Othman, M. F., Husain, H., Remeli, M. F., & Syawal, M. S. (2012). Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Engineering, 41, 1587–1592.
Mitchelle, A. J. (1986). Composites of commercial wood pulp fibres and cement. Appita, 33(6), 461–463.
Mohd Nor, M. A., Sapuan, S. M., Yusoff, M. Z. M. & Zainudin, E. S. (2023). Mechanical, thermal and morphological properties of woven kenaf fiber reinforced polylactic acid (PLA) composites. Fibers and Polymers. 23 (10), 2875-2884. http:// doi. 10. 1007/s1. 2221-4370-2
Muthalagu, R., Srinivasan, V., Kumar, S. S. & Krishna, M. V. (2021). Extraction and effects of mechanical characterization and thermal attributes of jute, prosopsis juliflora bark and kenaf fibers reinforced bio-composites used for engineering applications. Fibers and Polymers. 22 (7), 2018-2026
Nashino, T., Hireo, K., Kotera, M., Nakamae, K., & Inagaki, K. (2003). Kenaf reinforced biodegradable composite. Composites Science and Technology, 63(9), 1281–1286.
Patel, R. V., Yadav, A. & Winczek, J. (2023). Physical, mechanical, and thermal properties of natural fiber-reinforced epoxy composites for construction and automotive applications. Applied Sciences. 13, 5126, 2-28. https://doi.org/103390/app
Pickering, K. L., M. G. Aruan, E., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites: Part A, 83, 98–112.
Ramesh, M., Palanikumar, K., & Reddy, K. H. (2017). Plant Fiber Based Bio Composites: Sustainable and Renewable Green Materials. Renewable and Sustainable Energy Reviews, 79, 558–584. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.094
Razak, S. I. A., Abdul Rahman, W., Hashim, S., & Yahya, M. Y. (2014). Enhanced interfacial interaction and electronic properties of novel conducting kenaf/polyaniline bio-fibers. Polymer Plastics Technology and Engineering, 52(1), 51–71.
Razavi, M. (2016). Performance of kenaf fiber reinforced polymer composites in various environments. PhD Thesis. Universiti Teknologi Malaysia. Malaysia.
Sravya, S., & Kumar, B. S. (2015). Evaluation on the Mechanical Properties of Hybrid Composites (kenaf, E-glass, Jute). International Journal of Latest Trends in Engineering and Technology, 5, 164–170.
Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329–1335. https://doi.org/10.1016/J.COMPOSITESA.2010.06.001
Thaazi, I., Azam, F. A. A., Muhamad, N., Hui, D., Sulong, A. & Gaff, M. (2023). Effect of fiber orientation and elevated temperature on the mechanical properties of unidrectional continuous kenaf reinforced PLA composites. Reviews on Advanced Materialss Science. 62; 20220275, 1-13
Uzoma, A. E., Nwaeche, C. F., Al-Amin, Md., Muniru, O. S., Olatunji, O. & Nzeh, S. O. (2023). Development of interior and exterior automative plastics parts using kenaf fiber reinforced polymer composite. Eng. MDPI. 4, 1698-1710
Vision paper. (2003). About the kenaf fiber plant. Retrieved September 25, 2018, from Http://Www.Visionpaper. Com/Kenaf2.Html.
Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Adole Michael ADOLE

This work is licensed under a Creative Commons Attribution 4.0 International License.